{"id":115795,"date":"2019-07-19T18:14:29","date_gmt":"2019-07-19T10:14:29","guid":{"rendered":"https:\/\/mooool.com\/qingdao-shine-times-waterscape-by-sushui.html"},"modified":"2019-07-19T19:59:16","modified_gmt":"2019-07-19T11:59:16","slug":"qingdao-shine-times-waterscape-by-sushui","status":"publish","type":"post","link":"https:\/\/mooool.com\/en\/qingdao-shine-times-waterscape-by-sushui.html","title":{"rendered":"Shimao Qingdao, Shine Times – Waterscape by Sushui Design"},"content":{"rendered":"

\u672c\u6587\u7531 \u7d20\u6c34\u8bbe\u8ba1 \u6388\u6743mooool\u53d1\u8868\uff0c\u6b22\u8fce\u8f6c\u53d1\uff0c\u7981\u6b62\u4ee5mooool\u7f16\u8f91\u7248\u672c\u8f6c\u8f7d\u3002<\/span><\/span><\/strong>
\n Thanks Sushui Design for authorizing the publication of the project on mooool, Text description provided by Sushui Design.<\/span><\/span><\/strong><\/p>\n

 <\/p>\n

\u7d20\u6c34\u8bbe\u8ba1<\/strong><\/a>\uff1a\u4e00\u5f20\u767d\u7eb8\u4e0a\u6709\u56fa\u5b9a\u7684\u4e24\u4e2a\u9ed1\u70b9F1\u548cF2\uff0c\u8fd8\u6709\u4e00\u4e2a\u6e38\u79fb\u4e0d\u5b9a\u7684\u9ed1\u70b9P\u3002\u9ed1\u70b9P\u88abF1\u548cF2\u62c9\u626f\u7740\uff1a\u70b9P\u5230F1\u7684\u8ddd\u79bb\u4e0e\u5176\u5230F2\u7684\u8ddd\u79bb\u4e4b\u548c\u59cb\u7ec8\u6052\u5b9a\u3002\u9ed1\u70b9P\u5728\u8fd9\u6837\u7684\u675f\u7f1a\u4e0b\u6e38\u8361\u7684\u8f68\u8ff9\u88ab\u79f0\u4e3a\u201c\u692d\u5706\u201d\u3002<\/p>\n

Sushui Design<\/strong><\/a>\uff1aThere are two fixed black points F1 and F2 on a piece of white paper, and a black point P that is indeterminate. The black point P is pulled by F1 and F2: the sum of the distance from point P to F1 and its distance from F2 is always constant. The trajectory of the black point P that sways downstream of such a restraint is called an “oval”.<\/p>\n

 <\/p>\n

\"\"<\/a>
\u00a9 \u7d20\u6c34\u8bbe\u8ba1<\/figcaption><\/figure>\n

 <\/p>\n

\u6570\u5b66\u4e2d\u7684\u692d\u5706\u7531\u4e24\u4e2a\u7126\u70b9F1\u548cF2\u4ee5\u53ca\u52a8\u70b9P\u5b9a\u4e49\u3002\u5728\u692d\u5706\u5f62\u7684\u6da1\u65cb\u4e2d\uff0c\u8fb9\u7f18\u6e85\u8d77\u7684\u767d\u8272\u6c34\u6cab\u79bb\u6f29\u6da1\u4e2d\u5fc3\u65f6\u8fd1\u65f6\u8fdc\uff0c\u4e0e\u6b64\u540c\u65f6\uff0c\u5f53\u5b83\u4eec\u9760\u8fd1F1\u65f6\u5c31\u8fdc\u79bb\u4e86F2\uff0c\u9760\u8fd1F2\u65f6\u53c8\u8fdc\u79bbF1\u3002\u8fd9\u6837\u6b64\u6d88\u5f7c\u957f\u7684\u77db\u76fe\u53d8\u5316\u662f\u692d\u5706\u6da1\u65cb\u6bd4\u6b63\u5706\u6da1\u65cb\u66f4\u52a0\u8ff7\u4eba\u7684\u7279\u8d28\u3002<\/p>\n

The oval in mathematics is defined by two focal points F1 and F2 and the moving point P. In an elliptical vortex, the white water splashing from the edge is near and far from the center of the vortex, and at the same time, when they are close to F1, they are far away from F2, and when they are close to F2, they are far away from F1. This contradictory change is what makes the elliptical vortex more fascinating than the perfect circular vortex.<\/p>\n

 <\/p>\n

\u25bc\u89c6\u9891<\/strong>\u00a0Video\u00a0\u00a9Lu Bing<\/span><\/p>\n